wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

On the interval [0,1] the function f(x)=x1005(1−x)1002 assumes maximum value equal to.

A
(1005)1002(1002)1005(2007)2007
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(2007)2007(1005)1005(1002)1002
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(2007)2007(1005)1002(1002)1005
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(1005)1005(1002)1002(2007)2007
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D (1005)1005(1002)1002(2007)2007
f(x)=x1005(1x)1002
We know that for a function f(x) at the point where f(x)=0f(x) assumes its maximum and minimum values.
f(x)=x1005(1002)(1x)1001(1)+(1x)10021005x1004=x1004(1x)1001[10051005x1002x]
f(x)=x1004(1x)1001[10052007x]
f(x)=0
x=0,x=1,x=10052007
f(x) assumes its maximum value at x=10052007
f(x)x=10052007=(10052007)1005(110052007)1002=(1005)1005(1002)1002(2007)2007

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon