The correct option is A 14
Given f(x)=x25(1−x)75
⇒ f′(x)=25x24(1−x)75−75x25(1−x)74
=25x24(1−x)74(1−4x)
∴ f′(x)=0
⇒ x=0,1,14
If x<14, them
f′(x)=25x24(1−x)74(1−4x)>0
and if x>14,then
f′(x)=25x24(1−x)74(1−4x)<0
Thus f′(x) changes its sign from positive to negative as x passes throough 14 from left to right.
Hence f(x) attains its maximum at x=14