On the parabola y=x2, the point least distance from the straight liney=2x−4 is
(1, 1)
Given, parabolay=x2 .....(i)Straight liney=2x−4 .....(ii)From(i)and(ii),x2−2x+4=0Letf(x)=x2−2x+4, ∴ f′(x)=2x−2.For least distance,f′(x)=0 ⇒2x−2=0 ⇒x=1Fromy=x2,y=1So the point least distant from the line is(1,1).