The correct option is
C 200I will denote f(x) as f and g(x) as g.
frac(x)= fractional part of x.
frac(x)=x−[x]
f(x)=min{x−[x],1−x+[x]}
⟹f(x)=min{frac(x),1−frac(x)}
g(x)=max{x−[x],1−x+[x]}
⟹g(x)=max{frac(x),1−frac(x)}
For 0≤frac(x)≤0.5,f=frac(x);g=1−frac(x)
⟹g−f=1−2frac(x)
Similarly,For 0.5≤frac(x)≤1,g=frac(x);f=1−frac(x)
⟹g−f=2frac(x)−1
Given that,
∫n0g(x)−f(x)dx=100
Since, the above function is periodic, i.e. P(k)=P(k+1) where P(K)=∫k+1kg(x)−f(x)dx
⟹∫10(g(x)−f(x)dx=∫21g(x)−f(x)dx=∫32(g(x)−f(x)dx=∫nn−1g(x)−f(x)dx
⟹∫n0(g(x)−f(x)dx=n∫10g(x)−f(x)dx ⟹n∫10g(x)−f(x)dx=n(∫0.50g(x)−f(x)dx+∫10.5g(x)−f(x)dx)=100
⟹n(∫0.501−2frac(x)dx+∫10.52frac(x)−1dx)=100
In the range from 0 to 1, frac(x)=x
⟹n(∫0.501−2xdx+∫10.52x−1dx)=100
⟹n(∫10.52xdx−∫0.502xdx)=100
⟹n=200