wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

One end of a U-tube containing mercury is connected to a suction pump and the other end to atmosphere. A small pressure difference is maintained between the two columns. Show that, when the suction pump is removed, the column of mercury in the U-tube executes simple harmonic motion.

Open in App
Solution

Area of cross-section of the U-tube = A

Density of the mercury column = ρ

Acceleration due to gravity = g

Restoring force, F = Weight of the mercury column of a certain height

F = –(Volume × Density × g)

F = –(A × 2h × ρ ×g) = –2Aρgh = –k × Displacement in one of the arms (h)

Where,

2h is the height of the mercury column in the two arms

k is a constant, given by

Time period,

Where,

m is the mass of the mercury column

Let l be the length of the total mercury in the U-tube.

Mass of mercury, m = Volume of mercury × Density of mercury

= Alρ

Hence, the mercury column executes simple harmonic motion with time period.


flag
Suggest Corrections
thumbs-up
1
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Archimedes' Principle
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon