The correct option is B 112RT0
By, PVT=nR----(i)
At point A, P0×V0nR=TA=T0
At point C, P0×2V0nR=TC
⇒TC=2T0
AT point B, 2P0×2V0TB⇒TB=4T0
ΔQ=ΔU+ΔW
Process A to C
ΔQ1=nCVΔT+P0ΔV
ΔQ1=1×32RT0+P0V0
from eq. (i) P0V0=1×R×T0
ΔQ1=32RT0+RT0=52RT0
Process C to B
ΔQ2=nCVΔT+P0ΔV
As ΔV=0
so
ΔQ2=nCVΔT
ΔQ2=1×32R×2T0=3RT0
ΔQ=ΔQ1+ΔQ2
ΔQ=52RT0+3RT0
ΔQ=112RT0