The correct option is A (ac−bd+bc+ad)
(a2−b2)(c2−d2)−4abcd=a2c2−a2d2−b2c2+b2d2−4abcd
=a2c2−2abcd+b2d2−a2d2−2abcd−b2c2
=(ac)2−2(ac)(bd)+(bd)2−[(ad)2+2(ad)(bc)+(bc)2]
Using identity:
(a+b)2=a2+2ab+b2 and (a−b)2=a2−2ab+b2
we get,
=(ac−bd)2−(ad+bc)2
we know that, a2−b2=(a+b)(a−b)
⇒(ac−bd)2−(ad+bc)2=(ac−bd+bc+ad)(ac−bd−bc−ad)
Therefore, (ac−bd+ad+bc) and (ac−bd−ad−bc)
are the factors of (a2−b2)(c2−d2)−4abcd .