The correct option is C p2+p–1
p6+4p3–1=p6+3p3+p3–1
=[(p2)3+p3+(−1)3]+3p3
=[(p2)3+p3+(−1)3]−3×p2×p×(−1)
Using the identity , x3+y3+z3−3xyz=(x+y+z)(x2+y2+z2−xy−yz−zx), we get
(p2)3+p3+(−1)3−3×p2×p×(−1)
=(p2+p−1)((p2)2+p2+(−1)2−p3+p+p2)
=(p2+p−1)(p4+p2+1−p3+p+p2)
=(p2+p−1)(p4−p3+2p2+p+1)
Thus, (p2+p–1) is one of the factor of p6+4p3–1.
Hence, the correct answer is option (3).