One or more options can be correct:
Find the coefficient of x10 in (1−x7)(1−x8)(1−x9)(1−x)−3
12C2−5C3−4C2−3C1
Coefficient of x10 in (1−x7)(1−x8)(1−x9)(1−x)−3
= (1−x7)(1−x8)(1−x9)(1+3C1x+4C2x2+........+12C10x10+..........)
Ignoring the powers higher than x10
= (1−x7−x8+x15)(1−x9)(1+3C1x+4C2x2+...........+12C10x10+.............)
= (1−x7−x8)(1−x9)(1+3C1x+4C2x2+..........+12C10x10+..............)
Coefficient of x10 in (1−x7−x8−x9)(1+3C1x+4C2x2+............+12C10x10+................)
12C2−5C3−4C2−3C1=12C2−5C2−4C2−3C2