∠XOA=α and OA=a
So the coordinates of A are (acosα,asinα)
∠XOB=45+α and OB=OB=√2a
So the coordiantes of B are (√2acos(α+45∘),√2asin(α+45∘))
⇒B(acosα−asinα,acosα+asinα)
∠XOC=90+α and OC=a
So the coordinates of C are (acos(α+90∘),asin(α+90∘))
⇒C(−asinα,acosα)
Equation of OB is
y−0=acosα+asinα−0acosα−asinα−0(x−0)(cosα−sinα)y=(cosα+sinα)x
Equation of AC is
y−asinα=acosα−asinα−asinα−acosα(x−acosα)
(sinα+cosα)y−asinα(sinα+cosα)=−(cosα−sinα)x+(cosα−sinα)acosα
(sinα+cosα)y+(cosα−sinα)x=a(cos2α+sin2α)
(sinα+cosα)y+(cosα−sinα)x=a