The correct option is C →a⋅→b=0
Here,
|→p|=√w2+x2=2r ...(1),
|→q|=√y2+z2=r ...(2),
→p⋅→q=wy+xz=0 ...(3)
Now,
|→a|=√w2+4y2 ...(4)
w=−xzy from eqn (3)
Putting this value in eqn (1), we get
|→p|=xyr=2r
⇒x=2y
Similarly, putting x=−wyz in eqn (1), we get
w=2z
Putting the value of w in eqn (4),
|→a|=2r
Similarly, we get |→b|=r
→a⋅→b=wx2+2yz=wy+xz=0 [From (3)]
|→a×→b|=|wz−xy|=|2z2−2y2| =2|z2−y2|≠2r