The correct option is
B 4032066Given,
P=20082007−2008
Q=20082−2009
let us assume x=2008
∴ P=x2007−x=(x−1)(x+x2+x3+x4+......x2006)
=(x−1)(x(1+x)+x3(1+x+x2)+......+x2001(1+x+x2)+x2004(1+x+x2))
=x(x2−1)+x3(x−1)(1+x+x2)+......+x2001(x−1)(1+x+x2)+x2004(x−1)(1+x+x2)
Now, 1+x+x2=1+2008+20082=2009+20082=Q
∴ PQ=x(x2−1)+x3(x−1)(1+x+x2)+......+x2004(x−1)(1+x+x2)1+x+x2
So we can clearly see that the only term remaining which will be remainder is
PQ=x3−x1+x+x2=(x−1)+(1−x1+x+x2)
∴ the remainder of (PQ) is 1−x=1−2008=−2007
But the remainder cannot be negative, So the actual remainder is
Q−2007=(2008)2+2009−2007
=(2008)2+2
=4032066
Answer : Option B