The correct options are
A P(Ac/B)=2P(A/Bc)
B P(B)=2P(A/B)
D P(A/Bc)=2P(A∩B)
P(A∪B)=P(A)+P(B)−P(A∩B)
or 58=38+48−P(A∩B)
or P(A∩B)=28=14
Now,
P(Ac/B)=P(Ac∩B)P(B)
=P(B)−P(A∩B)P(B)
=1−2(14)
=12
2P(A/Bc)=2P(A∩Bc)P(Bc)
=2(P(A)−P(A∩B))P(Bc)
=4(38−28)=12
Hence, option (a) is correct.
P(A/B)=P(A∩B)P(B)
=14×21=12=P(B)
Hence, (b) is correct. Again,
P(Ac/Bc)=P(Ac∩Bc)P(Bc)
=1−P(A∩B)1−P(B)
=2(1−58)=34
P(B/Ac)=P(B∩Ac)1−P(A)
=P(B)−P(A∩B)58
=(12−14)58=25
Hence,
8P(Ac/Bc)=15P(B/Ac)
Hence, (c) is not correct. Again,
2P(A/Bc)=12
or P(A/Bc)=14=P(A∩B)
Hence, (d) is correct