A rocket is fired from the earth towards the moon. At what distance from the moon is the gravitational force on the rocket zero? Mass of earth = 6 x 1024 kg and Mass of moon = 7.4 x 1022 kg and orbital radius of the moon= 3.8 x 108 m. Neglect the effect of the sun and the other planets.
Let the distance between the Earth and Moon be r.
Now,
There are two opposite forces acting on the rocket of mass m,
gravitational force of the earth = GMem / x2
where Me is the mass of the earth and x is the distance between the rocket and earth, and
gravitational force of the moon = GMm / (r-x)2
now,
for the rocket to experience no force
GMem / x2 = GMm / (r-x)2
or
(r-x)2 = (Mm /Me)x2
now,
r = 3.8 x 108 m (not radius of moon)
Mm = 7.4 x 1022 kg
Me= 7.4 x 1022 kg
so,
(r-x)2 = (7.4 x 1022 / 7.4 x 1022 ).x2
or solving further
r - x = 0.11x
thus,
x = r / 1.11 = 3.8 x 108 / 1.11
so,
x = 3.468 x 108 m
thus, the distance from the moon will be
r-x = 3.8 x 108 m - 3.468 x 108 m
thus,
r-x = 3.82 x 107 m