The correct options are
A P>4abxy B P>2abxyA.M.=a+b2 and G.M.=√ab
Subtracting above equations we get
A.M.−G.M.=a+b2−√ab
=a+b−2√ab2 ------- (1)
=(√a−√b)22≥0 (since, square term is always ≥0)
⟹A.M.−G.M.≥0
Therefore, A.M.≥G.M.
⟹a+b2≥√ab
squaring on both sides.
⟹(a+b2)2≥ab
⟹(a+b)2≥4ab
Let a=ab and b=xy
⟹(ab+xy)2≥4abxy -------(1)
Let a=ax and b=by
⟹(ax+by)2≥4abxy -------(2)
multiplying (1) and (2)
⟹(ab+xy)2(ax+by)2≥(4abxy)2
applying square root on both sides
⟹(ab+xy)(ax+by)≥(4abxy)
Let a=2ab and b=2xy
⟹(2ab+2xy)2≥4abxy
⟹(ab+xy)2≥abxy -------(3)
multiplying (3) and (2)
⟹(ab+xy)2(ax+by)2≥4(abxy)2
applying square root on both sides
⟹(ab+xy)(ax+by)≥(2abxy)