Let ABC is a triangle. P and Q are the mid points of AB and BC respectively and R is the mid-point of AP.
Join PQ, QR, AQ, PC, RC as shown in the figure.
Now we know that median of a triangle divides it into two triangles of equal areas.
In triangle CAP, Cr is the mid point.
So
Area(ΔCRA)=(12)×Area(ΔCAP) ....1
Again in triangle CAB, CP is the mid point.
So
Area(ΔCAP)=(12)×Area(ΔCPB) ....2
from eqaution 1 and 2, we get
Area(ΔCAP)=(12)×Area(ΔCPB) .....3
Again in triangle PBC, PQ is the mid point.
So
(12)×Area(ΔCPB)=Area(ΔPBQ) ....4
From equation 3 and 4, we get
Area(ΔARC)=Area(ΔPBQ) ....5
Now QP, And QR are the medians of triangle QAB and QAP respectively
So
Area(ΔQAP)=Area(ΔQBP) ............6
and
Area(ΔQAP)=2×Area(ΔQRP) ............7
from equation 6 and 7, we get
Area(ΔPRQ)=(12)×Area(ΔPBQ) ............8
from equation 5 and 8, we get
Area(ΔPRQ)=(12)×Area(ΔARC) Now CR is the median of triangle CAP
So
Area(ΔARC)=(12)×Area(ΔCAP) =(12)×(12)×Area(ΔABC) =(14)×Area(ΔABC) Again RQ is the median of triangle RBC
So
Area(ΔRQC)=(12)×Area(ΔRBC) =(12)×Area(ΔABC)−(12)×Area(ΔARC) =(12)×Area(ΔABC)−(12)×(12)×(12)×Area(ΔABC) =(12)×Area(ΔABC)−(18)×Area(ΔABC) =(38)×Area(ΔABC) So
Area(ΔRQC)=(38)×Area(ΔABC)