In a right-angled triangle ΔACQ
AQ2=AC2+CQ2
AQ2=AC2+(BC2)2 ...... [∵CQ=BC2]
4AQ2=4AC2+(BC)2 ....... (1)
In a right-angled triangle ΔPCB
PB2=PC2+BC2
PB2=(AC2)2+BC2 ....... [∵PC=AC2]
4PB2=(AC)2+4BC2....... (2)
Adding (1) and (2), we get
4AQ2+4PB2=4AC2+(BC)2+(AC)2+4BC2
4AQ2+4PB2=5AC2+5BC2
4AQ2+4PB2=5(AC2+BC2)
But AC2+BC2=AB2 [∵△ABC is a right angled triangle at C]
∴4AQ2+4PB2=5AB2 [henceproved]