wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the smallest number by which each of the following numbers must be divided to obtain a perfect cube.

(i) 81

(ii) 128

(iii) 135

(iv) 192

(v) 704

Open in App
Solution

(i) 81 = 3 × 3 × 3 × 3

Here, one 3 is left which is not in a triplet.

If we divide 81 by 3, then it will become a perfect cube.

Thus, 81 ÷ 3 = 27 = 3 × 3 × 3 is a perfect cube.

Hence, the smallest number by which 81 should be divided to make it a perfect cube is 3.

(ii) 128 = 2 × 2 × 2 × 2 × 2 × 2 × 2

Here, one 2 is left which is not in a triplet.

If we divide 128 by 2, then it will become a perfect cube.

Thus, 128 ÷ 2 = 64 = 2 × 2 × 2 × 2 × 2 × 2 is a perfect cube.

Hence, the smallest number by which 128 should be divided to make it a perfect cube is 2.

(iii) 135 = 3 × 3 × 3 × 5

Here, one 5 is left which is not in a triplet.

If we divide 135 by 5, then it will become a perfect cube.

Thus, 135 ÷ 5 = 27 = 3 × 3 × 3 is a perfect cube.

Hence, the smallest number by which 135 should be divided to make it a perfect cube is 5.

(iv) 192 = 2 × 2 × 2 × 2 × 2 × 2 × 3

Here, one 3 is left which is not in a triplet.

If we divide 192 by 3, then it will become a perfect cube.

Thus, 192 ÷ 3 = 64 = 2 × 2 × 2 × 2 × 2 × 2 is a perfect cube.

Hence, the smallest number by which 192 should be divided to make it a perfect cube is 3.

(v) 704 = 2 × 2 × 2 × 2 × 2 × 2 × 11

Here, one 11 is left which is not in a triplet.

If we divide 704 by 11, then it will become a perfect cube.

Thus, 704 ÷ 11 = 64 = 2 × 2 × 2 × 2 × 2 × 2 is a perfect cube.

Hence, the smallest number by which 704 should be divided to make it a perfect cube is 11.


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Prime Factorisation_Tackle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon