wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=log root over 1+tanx/1-tanx, prove that dy/dx =sec2x

Open in App
Solution

y = log1+tanx1-tanxSo this can be written as y = 12{log(1+tanx)- log(1-tanx)}So differntiating it , we get dydx=12{ddx(log(1+tanx)) - ddx(log(1-tanx)}= 12{11+tanx×sec2x - 11-tanx×(-sec2x)}=12{11+tanx×sec2x + 11-tanx×(sec2x)}=sec2x2{11+tanx + 11-tanx}=sec2x2(1-tanx + 1+tanx1-tan2x)=sec2x2(21-tan2x)=sec2x1-tan2x=1+tan2x1-tan2x =1cos2x =sec2x

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Some Functions and Their Graphs
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon