wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

integration of sin^2 x / (1+sin x cos x) with upper limit as pi/2 and lower limit as 0

Open in App
Solution

0π/2sin2x1+sinxcosxdx Let I=0π/2sin2x1+sinxcosxdx ................(1)then by formula0π/2sin2x1+sinxcosxdx=0π/2sin2(π/2-x)1+sin(π/2-x)cos(π/2-x)dxI=0π/2cos2x1+sinxcosxdx ...................(2)Adding (1) and (2) we get2I=0π/2cos2x1+sinxcosxdx+0π/2sin2x1+sinxcosxdx2I=0π/2sin2x+cos2x1+sinxcosxdx2I=0π/211+sinxcosxdx2I=0π/211+122sinxcosxdx2I=0π/211+12sin2xdx2I=0π/222+sin2xdxI=0π/212+sin2xdxPut sin2x=2tanx1+tan2xI=0π/212+2tanx1+tan2xdxI=0π/21+tan2x2(1+tan2x)+2tanxdxI=120π/2sec2x1+tan2x+tanxdxLet tanx=t then limit becomes t=0 to t=I=12011+t2+tdxI=12011+t2+t+14-14dxI=1201(t+12)2+322dxI=12[23tan-1t+1232]t=0 to I=13[tan-1-tan-10]I=13π2I=π23

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Factorisation and Rationalisation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon