The correct option is A 2b√a2−b2
Given ellipse may be written as , x2(√2a)2+y2(√2b)2=1.
⇒e=√1−b2a2
⇒F1≡(−√2ae,0),F2≡(√2ae,0)
Let any point on the ellipse is, P(√2acosθ,√2bsinθ)
Thus area of triangle is ΔPF1F2=12|∣∣
∣
∣∣√2acosθ√2bsinθ1−√2ae01√2ae01∣∣
∣
∣∣|=2abesinθ
We know maximum value of sinθ is 1.
Hence maximum area is, =2abe=2b√a2−b2