The correct option is A abe
letp(x,y),s(ae,o),s2(−ae,o)bethegivenptrthenareaofΔPS1S2=12|x1(y2−y3)+x2(y3−y1)+x3(y1−y2)|=12|x(0)+ae(0−y)+(−ae)(y)|=12|−aey−aey|=12|−2aey|A=aeyA=ae√b2(1−x2a2)A=abea√a2−x2A=be√a2−x2dadx=be×12√a2−x2×(−2x)dadx=−xbe√a2−x2d2adx2=−be[1−√a2−x2−x×12√a2−x2×(−2x)]=−be×2a22(a2−x2)32forcriticalpointdadx=0⇒−xbe√a2−x2=0⇒x=0d2Adx2atx=0=−2a2be2a3<0soareaofmaximumwhenx=0maximumarea=be√a2−02=be×a=abe