The correct option is
C (313,926)
∵ Length of tangents from a point to circle are equal.
PQ=PR
Then parallelogram PQRS is rhombus.
∴ Mid-point of QR= midpoint of PS
and QR⊥PS
∴S is the mirror image of P w.r.t. QR
∵L≡2x+y=6
Let P≡(λ,6−2λ)
∵∠PQO=∠PRO=π2
∴OP is diameter of circumcircle PQR then centre is
(λ2,3−λ)
∴x=λ2⇒λ=2x
and y=3−λ,
then 2x+y=3∵P≡(2,3)
∴ Equation of QR is 2x+3y=4
Let S≡(α,β)
⇒α−22=β−33=−2(4+9−4)(4+9)=−1813
∴α=10−13,β=−1513
Now, equation of circumcircle of △QRS is
(x2+y2−4)+λ(2x+3y−4)=0
∵ it passes through S≡(−1013,−1513) then
(100169+225269−4)+λ(−2013−4513−4)=0
−351169+λ(−9)=0
or −9λ=−351169
∴λ=−39169=−313
∴ Circumcentre is (−λ,−3λ2)≡(313,926)