wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

P is any point on the diagonals AC of a parallelogram ABCD.Prove that ar(ADP)=ar( ABP).

Open in App
Solution


Join BD.
Let BD and AC intersect at point O.
O is thus the midpoint of DB and AC.
PO is the median of △△DPB,
So,
ar(△DPO)=ar(△BPO) .....(1)
ar(△ADO)=ar(△ABO) .....(2)
Case 1:
(2)−(1)
⇒ar△ADO-ar△DPO=ar△ABO-ar△BPO
Thus, ar(∆ADP) = ar(∆ABP)
Case II:

ar(△ADO)+ar(△DPO)=ar(△ABO)+ar(△BPO)ar△ADO+ar△DPO=ar△ABO+ar△BPO
Thus, ar(∆ADP) = ar(∆ABP)

flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Theorems
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon