Let Q be the point (x′,y′,z′).
Also, let OP=r and OQ=r′=√(x′2+y′2+z′2).
Then, equation of OQ(in distance form) is
xx′r′=yy′r′=zz′r′=r
So, coordinate of the pointP, which is at a distance r from O are
(rx′r′,ry′r′,rz′r′)⇒(x′p2r′2,y′p2r′2,z′p2r′2) as rr′=p2
This point P lies on the plane lx+my+nz=p
∴lx′p2r′2+my′p2r′2+nz′p2r′2=p⇒p(lx′+my′+nz′)=r′2=(x′2+y′2+z′2)
∴ Locus of Q(x′,y′z′) is
p(lx+my+nz)=(x2+y2+z2)