Refer attached image, given ABCD is a parallelogram
AP∥CR
CP=PD
Since, △APD∼△RCD(AAA)
⇒DADR=DPDC(CPCT)
⇒DADR=12(AsPisthemidpointofCD)
⇒2DA=DR
⇒2DA=DA+AR
⇒DA=AR
Hence Proved DA=AR
Again as, ∠APD=∠QCD&∠BQC=∠APD(AP∥QC),
⇒∠APD=∠QCD=∠BQC
&
∠RDC=∠CBQ(Oppositeof∠is∥gm)
&
∠BCQ=∠CRD(Propertiesof∥gm)
⇒△BQC∼△DCR(AAA)
Now,
As,
⇒△APD≅△CBQ
PD=BQ
or CD2=BQ(AsPisthemidpointofCD)
or AB2=BQ(In∥gmAB=CD)
⇒ Q is the mid-point of AB
Again,
as,
△BQC∼△DCR
BQCQ=CDCR
⇒2CQ=CR(AsCD=2BQ)
⇒2CQ=CQ+QR
⇒CQ=QR
Hence Proved CQ=QR