Equation of line joining (acosα,asinα) and (acosβ,asinβ) is
y−asinα=(asinβ−asinαacosβ−acosα)(x−acosα)y−asinα=(sinβ−sinαcosβ−cosα)(x−acosα)y−asinα=⎛⎜ ⎜ ⎜⎝2cosβ+α2sinβ−α2−2sinβ+α2sinβ−α2⎞⎟ ⎟ ⎟⎠(x−acosα)y−asinα=−⎛⎜ ⎜ ⎜⎝cosβ+α2sinβ+α2⎞⎟ ⎟ ⎟⎠(x−acosα)sinβ+α2y−asinαsinβ+α2=−cosβ+α2x+acosαcosβ+α2xcosβ+α2+ysinβ+α2=a(cosαcosβ+α2+sinαsinβ+α2)
xcosβ+α2+ysinβ+α2=a(cos(α−β+α2))
xcosβ+α2+ysinβ+α2=acosα−β2
Let the length of perpendicular from origin be p
p=∣∣∣0(cosβ+α2)−0(sinβ+α2)−acosα−β2∣∣∣√cos2β+α2+sin2β+α2p=∣∣∣−acosα−β2∣∣∣1⇒p=acosα−β2