P={(x,y):x,y ϵ R,x2+y2=1},then P is
reflexive
symmetric
transitive
equivalence
P={(x,y):x,y ϵ R,x2+y2=1}(a,a)∉P, (a,b) ϵ P ⇒(b,a) ϵ P ∴R is symmetric
Let R = {(x, y) : x, y ϵ A, and x + y =5} where A ={1,2,3,4,5}, then R is
Let P = {(x,y) x2+y2=1,x,y∈R}. Then P is.