The correct option is D 0
Pn=cosnθ+sinnθ
f(θ)=2P6−3P4+1=2cos6θ+2sin6θ−3cos4θ−3sin4θ+1
=2(cos6θ+sin6θ)−3((cos2θ+sin2θ)2−2cos2θsin2θ)+1
=2(cos6θ+sin6θ)+6cos2θsin2θ−2
=2[(cos2θ+sin2θ)3−3cos2θsin2θ(1)]+6cos2θsin2θ−2
=2−6cos2θsin2θ+6cos2θsin2θ−2
f(θ)=0
[∵a3+b3=(a+b)3−3ab(a+b),a2+b2=(a+b)2−2ab,sin2θ+cos2θ=1]