wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

prove that sin theta (1 + tan theta) + cos theta (1 + cot theta) = sec theta + cosec theta

Open in App
Solution

Answer :
Given
Sin θ ( 1 + tan θ ) + Cos θ ( 1 + Cot θ ) = Sec θ + Cosec θ

Taking L.H.S.
Sin θ ( 1 + tan θ ) + Cos θ ( 1 + Cot θ )

Sin θ ( 1 + Sin θCos θ ) + Cos θ ( 1 + Cos θSin θ )

Sin θ Cos θ +Sin θCos θ + Cos θ Sin θ + Cos θSin θ

Sin θCos θ ( Sin θ + Cos ​θ ) + Cos θSin θ( Sin θ + Cos θ )

( Sin θ + Cos ​θ ) ( Sin θCos θ + Cos θSin θ )

( Sin θ + Cos ​θ ) Sin2θ + Cos2θSin θ Cos θ

We know ( Sin 2θ + Cos2θ = 1 ) So, we get

( Sin θ + Cos ​θ )1Sin θ Cos θ

Sin θSin θ Cos θ +Cos θSin θ Cos θ


1Cos θ + 1Sin θ

Sec θ + Cosec θ
Hence
L.H.S. = R.H.S. ( Hence proved )

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratio(sin,cos,tan)
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon