q2=pr
as p,q,r are in G.P.
Tp,Tq,Tr of an A.P. are in H.P.
∴1Tp,1Tq,1Tr are in A.P.
1Tq−1Tp=1Tr−1Tq
Tp−TqTp=Tq−TrTr,(p−q)da+(p−1)d+(q−r)da+(r−1)d
or a(p+r−2q)=d[(p−1)(q−r)−(r−1)(p−q)]
or ad=pq−pr−+r−(rp−rq−p+q)p+r−2q
=p(q+1)+r(q+1)−2pr−2qp+r−2q
Put pr=q2 in numerator
∴ad=(q+1)(p+r−2q)p+r−2q=q+1