Let z=x+iy
then z+1z+i=x+iy+1x+iy+i=(x+1)+iyx+i(y+1)
=(x+1)+iyx+i(y+1)×x−i(y+1)x+i(y+1)
=x(x+1)+y(y+1)+i(yx−xy−x−y−1)x2+(y+1)2
=x(x+1)+y(y+1)+i(−x−y−1)x2+(y+1)2
Given that Re(z+1z+i)=1
∴x(x+1)+y(y+1)x2+(y+1)2=1
⇒x2+y2+x+y=x2+y2+2y+1
⇒x−y=1
The locus of P is x−y=1.