Equation of the circle is given as,
x2+y2−3x−x+3y−1=0 ……………..(1)
⇒x2+y2−4x+3y−1=0
⇒x2+y2+2(−2)x+2.(32)y+(−1)=0
∴g=−2, f=32 and c=−1
Equation of the chord of contact of circle (1) is given as
x1x+y1y+g(x1+x)+f(y1+y)+c=0
⇒x1x+y1y+(−2)(x1+x)+32(y1+y)−1=0
Now, equation of the chord of contact of circle (1) wrt to (1,3)
1x+3y+(−2)(1+x)+32(3+y)−1=0
2x+6y−4(1+x)+3(3+y)−2=0
__________________________________
2
⇒2x+6y−4−4x+9+3y−2=0
⇒−2x+9y+3=0
⇒2x−9y−3=0
⇒2x−9y=3.