wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Paragraph for below question
नीचे दिए गए प्रश्न के लिए अनुच्छेद

Let z = a + ib (a, bR) be a complex number. Modulus of z defined as |z|=a2+b2 and argument of z is arg(z)=tan1ba.

माना z = a + ib (a, bR) एक सम्मिश्र संख्या है। z का मापांक |z|=a2+b2 के रूप में परिभाषित है तथा z का कोणांक arg(z)=tan1ba है।

Q. If z = –1 + 2i, then the principal argument of z is

प्रश्न - यदि z = –1 + 2i, तब z का मुख्य कोणांक है

A
–tan–12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
tan–12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
π – tan–12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
–π + tan–12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C π – tan–12
Solution

flag
Suggest Corrections
thumbs-up
0
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithm of a Complex Number
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon