The correct option is B x=3+3cosθ,y=−4+3sinθ
Given equation
x2+y2−6x+8y+16=0
⇒x2−6x+9+y2+8y+16+16−9−16=0
⇒(x−3)2+(y+4)2=32
As we know parametric equation for the circle
(x−a)2+(y−b)2=r2 is
x=a+rcosθ,y=b+rsinθ
So the required parametric equation will be
x=3+3cosθ,y=−4+3sinθ