The correct option is B (32n−14)
(1+x+x2)2n=a0+a1x+a2x2...+a4nx4n
Substituting x=1, we get
32n=a0+a1+a2...+a4n ...(i)
Substituting x=−1, we get
12n=a0−a1+a2...+a4n ...(ii)
Subtracting (ii) from (i), we get
32n−1=2(a1+a3+a5...+a4n−1)
32n−12=a1+a3+a5...+a4n−1
Now a4n−r=ar
32n−12=a1+a3+a5...+a2n−1+(a2n+1+a2n+3+a2n+5...+a4n−1)
32n−12=2(a1+a3+a5...+a2n−1)
a1+a3+a5...+a2n−1=32n−14
∑nr=1a2r−1=32n−14