Passing through (2,2√3) and inclined with the x-axis at an angle of 75∘
Here x0=2, y0=2√3 and θ=75∘
Now m=tan 75∘=tan (45∘+30∘)
=tan 45∘+tan 30∘1−tan 45∘ tan 30∘
=1+1√31−1√3=√3+1√3−1
Putting these values in y−y0=m(x−x0), we have
y−2√3=√3+1√3−1(x−2)
⇒ (√3−1)(y−2√3)=(√3+1)(x−2)
⇒ (√3+1)x−(√3−1)y=−6+2√3+2√3+2
=4√3−4=4(√3−1)