Question 89
Perimeter of a parallelogram-shaped land is 96 m and its area is 270 m2. If one of the side of this parallelogram is 18 m, find the length of the other side. Also, find the lengths of altitudes l and m in the given figure.
Given, perimeter of parallelogram = 96 m and area of parallelogram =270 m2.
In a parallelogram ABCD, AB = CD = 18 m and AD = BC
As we know, perimeter of a parallelogram ABCD = AB + BC + CD + AD
⇒96=18+AD+18+AD [∵ AD=BC]
⇒96=36+2AD⇒2AD=60⇒AD=30m
So, AD = BC = 30 m
Now, area of parallelogram ABCD = Base × Corresponding height
⇒270=AB×DE [∵base=AB]⇒270=18×DE⇒27018=DE⇒DE=m=15 m
Also, area of parallelogram ABCD=AD×BF [∵ base =AD]
⇒270=30×l⇒BF=l=27030⇒l=9m
Hence, altitudes l = 9 m and m =15 m.