Period of 2sin3x+5cos3x is 2π
II Period of sin4x+cos4x is π2
I. f(x)=2sin3x+5cos3x
cos3x=4cos3x−3cosx
sin3x=3sinx−4sin3x
f(x)=54(cos3x+3cosx)+(3sinx−sin3x)2
=54cos3x−12sin3x+154cosx+32sinx
∴ Period of f(x)=LCMof(2π3,2π3,2π,2π)
=2π True.
II. f(x)=sin4x+cos4x
=1−(sin2x)22=1−(1−cos4x2)2=1+cos4x4
Period of f(x)= period of cos4x=2π4=π2.
True [cos2x=1−2sin2x]