Period of the function 2 sin4x + 3 cos4x is
y=sin^4x+cos^4x
sin2x+cos2x)2−2sin2xcos2x=1−12sin22xy=sin4x+cos4x=(sin2x+cos2x)2−2sin2xcos2x=1−1/2sin^2 2x
We know that the period of sinx 2π. So, the period of sin(2x) is π.
Hence, it is clear that the period of sin^2(2x)i π/2.
So, the period of the given function will be π/2.