Perpendicular are drawn from points on the line x+22=y+1−1=z3 to the plane x + y + z = 3. The feet of perpendiculars lie on the line
x2=y−1−7=z−25
To find the foot of perpendiculars and find its locus.
formula used
Foot of perpendicular from (x1,y1,z1) to ax+by+cz+d=0 be (x2,y2,z2), then x2−x1a=y2−y1b=z2−z1c=−(ax1+by1+cz1+d)a2+b2+c2Any point on x+22=y+1−1=z3=λ⇒ x=2λ−2,y=−λ−1,z=3λ
Let foot of perpendicular from (2λ−2,−λ−1,3λ) to x+y+z=3 be (x2,y2,z2).∴ x2(2λ−2)1=y2−(−λ−1)1=z2−(3λ)1=−(2λ−2−λ−1+3λ−3)1+1+1⇒x2−2λ+2=y2+λ+1=z2−3λ=2−4λ3∴ x2=2λ3,y2=1−7λ3,z2=2+5λ3⇒ λ=x2−023=y2−1−73=z2−253
Hence, foot of perpendicular lie on
x23=y−1−73=z−253⇒x2=y−1−7=z−25