Perpendicular distance from the origin to the line joining the points (acosθ,asinθ),(acosϕ,asinϕ) is
A
2acos(θ−ϕ)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
acos(θ−ϕ2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
4acos(θ−ϕ2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
acos(θ+ϕ2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bacos(θ−ϕ2) Slope of the line =asinϕ−asinθacosϕ−acosθ Hence the equation of the line will be y−asinθx−acosθ=asinϕ−asinθacosϕ−acosθ y−asinθx−acosθ=sinϕ−sinθcosϕ−cosθ (cosϕ−cosθ)y−(sinϕ−sinθ)x−asinθ(cosϕ−cosθ)+acosθ(sinϕ−sinθ)=0 (cosϕ−cosθ)y−(sinϕ−sinθ)x+a(cosθsinϕ−sinθcosϕ)+a(sinθcosθ−cosθsinθ)=0 (cosϕ−cosθ)y−(sinϕ−sinθ)x+a(cosθsinϕ−sinθcosϕ)=0 (cosϕ−cosθ)y−(sinϕ−sinθ)x+a(cosθsinϕ−sinθcosϕ)=0 (cosϕ−cosθ)y−(sinϕ−sinθ)x+asin(ϕ−θ)=0 Hence perpendicular distance from the origin will be d=|asin(ϕ−θ)|√(cosϕ−cosθ)2+(sinϕ−sinθ)2 =|asin(ϕ−θ)|√(cos2ϕ+sin2ϕ)+(cos2θ+sin2θ)−2(cosθ.cosϕ+sinθ.sinθ) =|asin(ϕ−θ)|√2−2(cosθ.cosϕ+sinθ.sinθ) =|asin(ϕ−θ)|√2(1−cos(θ−ϕ)) =|asin(ϕ−θ)|√4sin2(θ−ϕ2) =|asin(ϕ−θ)|2sin(θ−ϕ2) =∣∣∣2asin(ϕ−θ2)cos(ϕ−θ2)∣∣∣2sin(θ−ϕ2) =acos(ϕ−θ2) =acos(θ−ϕ2)