Possible integral value(s) of m for the equation sin x−√3 cos x=4m−64−m can be valid for some x ϵ[0,2π], is
-1
0
1
2
−2≤sinx−√3cos x≤2
Hence −2≤4m−64−m≤2
−1≤2m−34−m≤1
now if 2m−34−m≤1
(2m−3)−(4−m)4−m≤0
3m−7m−4≥0
Again −1≤2m−34−m or (2m−3)+(4−m)4−m≥0
m+1m−4≤0
hence m ϵ[−1,73]⇒ m ϵ{−1,0,1,2}