The correct option is A 2xy
Method I :
We know that potential function ϕ and stream funciton Ψ together constitute an analytic function known as complex potential ′ω′ i,e.
ω=ϕ+iΨ is analytic where ϕ=x2−y2
∵ Real part is given so by case I of MILNE THOMSON method.
Step 1: ∂ϕ∂x=2x≈ϕ1(x,y)
Step 2: ϕ1(z,0)=2z
Step 3: ∂ϕ∂y=−2y≈ϕ2(x,y)
Step 4: ϕ2(z,0)=0
Step 5: ω=f(z)=∫[ϕ1(z,0)−iϕ2(z,0)]dz+c
ω=∫(2z)dz+c=z2+c
ϕ+iΨ=(x2−y2)+2ixy+c
(∵ At x=y=0,Ψ=0,c=0,)
Hence stream function
Ψ=2xy+c=2xy
∵ω=ϕ+iΨ is an analytic fucntion
Method II: By C - R equation,
ϕx=Ψy & ϕy=−Ψx
∵ Ψ→f(x,y)
So by stotal derivative concept
dΨ=(∂Ψ∂y)dx+(∂Ψ∂y)dy
=(−∂ϕ∂y)dx+(−∂ϕ∂y)dy (By C - Req is S)
=(2y)dx+(2x)dy {∵ϕ=x2−y2}
dΨ=2(xdy+ydx)=2d(xy)
Integrating both sides
Ψ=2xy+c
But at x=y=0,Ψ=0 so c=0
Hence stream function Ψ=2xy.
Method III:
Φ=x2−y2
ϕx=2x=Ψy (By C.R. eqations)
Ψ=2xy+f(x) ..... (i)
Again , By C.R. equations
ϕy=−Ψx
⇒−2y=−[2y+f′(x)]
f′(x)=0
f(x)=C
By using (i), Ψ=2xy+C
At x=0,y=0,Ψ=0
⇒C=0
∴Ψ=2xy
Note: It will be better to use MILNE-THOMSAN method, while solving Quesitons 3,7,8,9,10 & 11.