Diameter of ellipse b2x2+a2y2=a2b2 is y=−b2xa2m
On substituting y in the equation of ellipse, we get
b2x2+a2(−b2xa2m)2=a2b2⇒b2x2+b4x2a2m2=a2b2⇒x2+b2x2a2m2=a2⇒(a2m2+b2)x2=a4m2⇒x=±a2m√a2m2+b2
We know y=−b2xa2mv
⇒y=−b2a2m(±a2m√a2m2+b2)
⇒y=∓b2√a2m2+b2
So, the coordinates of P are (a2m√a2m2+b2,−b2√a2m2+b2) and P′ are (−a2m√a2m2+b2,b2√a2m2+b2)
⇒PP′2=4a4m2a2m2+b2+4b4a2m2+b2⇒4a2+4b22=4a4m2a2m2+b2+4b4a2m2+b2⇒a2+b22=a4m2+b4a2m2+b2⇒a4m2+a2m2b2+a2b2+b4=2a4m2+2b4⇒(a4−a2b2)m2=a2b2−b4⇒m2=b2(a2−b2)a2(a2−b2)⇒m=ba
So, option A is correct.