PQ = 1.28, PM =0.16 ⇒ MQ = PQ - PM = 1.28 - 0.16 = 1.12 NR = PR - PN = 2.56 - 0.32 = 2.24 Now
PMMQ=0.161.12=17
PNNR=0.322.24=17
∴PMMQ=PNNR [Eachratio=17] ⇒ By the converse of Basic Proportionality Theorem, MN∥QR
M and N are points on the sides PQ and PR respectively of a ΔPQR. For each of the following cases, whether MN || QR: (i) PM = 4 cm, QM = 4.5 cm, PN = 4 cm, NR = 4.5 cm (ii) PQ =1.28 cm, PR = 2.56 cm, PM = 0.16 cm, PN = 0.32 cm