The correct option is B 4√5 cm
Given, chords PQ=8 cm and RS=16 cm and AB=4 cm
Let perpendicular from the centre meet the chord RS at B and PQ at A.
Since, the perpendicular from the centre of the circle to the chord bisects the chord,
RB=BS=8 cm and PA=AQ=4 cm.
Let OB=x cm, then OA=OB+AB=(x+4) cm.
In right triangle OBS,
OS2=OB2+BS2=OB2+64 (i)
In right triangle OAQ,
OQ2=OA2+AQ2=OA2+16 (ii)
∴ OS and OQ are the radii of the circle
∴ OB2+64=OA2+16
⇒ x2+64=(x+4)2+16
⇒ x2+64=x2+8x+16+16
⇒ 8x=32⇒x=4
∴ From eqn (i)
Radius of the circle(OS)2=16+64=80
⇒ OS=4√5 cm