Let TR = y and TP = x
We know that the perpendicular drawn from the centre to the chord bisects it.
∴ PR = RQ
Now, PR + RQ = 16
⇒ PR + PR = 16
⇒ PR = 8
Now, in right triangle POR
By Using Pyhthagoras theorem, we have
PO2 = OR2 + PR2
⇒ 102 = OR2 + (8)2
⇒ OR2 = 36
⇒ OR = 6
Now, in right triangle TPR
By Using Pyhthagoras theorem, we have
TP2 = TR2 + PR2
⇒ x2 = y2 + (8)2
⇒ x2 = y2 + 64 .....(1)
Again, in right triangle TPO
By Using Pyhthagoras theorem, we have
TO2 = TP2 + PO2
⇒ (y + 6)2 = x2 + 102
⇒ y2 + 12y + 36 = x2 + 100
⇒ y2 + 12y = x2 + 64 .....(2)
Solving (1) and (2), we get
y= 10.67
From (1)
x2=(10.67)2+64⇒x2=113.85+64⇒x2=177.85⇒x=13.34
∴ TP = 13.34cm