wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

PQR is a right-angled triangle with PQ=3cm and QR=4cm. A circle which touches all the sides of the triangle is inscribed in the triangle. The radius of the circle is

A
2cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1cm
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
5cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 1cm
GivenPQRisarighttrianglewithPQR=1rightangle.

ΔPQRinscribesacirclewithcentreasO.

RQtouchestheincircleatD,

RPtouchestheincircleatEand

PQtouchestheincircleatF.

QR=4cm&PQ=3cm.Tofindouttheradiusoftheincircle=(OD,OE,OF)=x=?

Solution

GiventhatPQRisarighttrianglewithPQR=1rightangle

$So,\quad applying\quad Pythagoras\quad theorem,\quad we\quad get

PQ=RP2+PQ2=42+32cm=5cm.

NowRD=RE=p,QD=QF=qandPF=PE=z.sincethelengthsofthetangents,fromapointtoacircle,areequal.

(p+q)+(q+r)+(r+p)=RQ+PQ+RP=(4+3+5)cm=12cm

p+q+r=122cm=6cm..........(i)AlsoRQ=p+q=4cm,PQ=r+q=3cm&RP=r+p=5cm.(i)RP=q=(65)cm=1cm............(ii).

NowODAB&OFBC.sincetheradiusthroughthepointofcontactofatangenttoacircleisperpendiculartothetangent.QDO=BFO=90o.InBFODalltheanglesareequalandBD=BF.SoBFODisasquare.i.ex=BD=q=1cm.Theradiusoftheincircle=x=1cm.AnsOptionB.

282365_239516_ans.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Construction of Regular Hexagon
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon