The correct option is
B 1cm
Given−PQRisarighttrianglewith∠PQR=1rightangle.
ΔPQRinscribesacirclewithcentreasO.
RQtouchestheincircleatD,
RPtouchestheincircleatEand
PQtouchestheincircleatF.
QR=4cm&PQ=3cm.Tofindout−theradiusoftheincircle=(OD,OE,OF)=x=?
Solution−
GiventhatPQRisarighttrianglewith∠PQR=1rightangle
$So,\quad applying\quad Pythagoras\quad theorem,\quad we\quad get
PQ=√RP2+PQ2=√42+32cm=5cm.
NowRD=RE=p,QD=QF=qandPF=PE=z.sincethelengthsofthetangents,fromapointtoacircle,areequal.
∴(p+q)+(q+r)+(r+p)=RQ+PQ+RP=(4+3+5)cm=12cm
p+q+r=122cm=6cm..........(i)AlsoRQ=p+q=4cm,PQ=r+q=3cm&RP=r+p=5cm.(i)−RP=q=(6−5)cm=1cm............(ii).
NowOD⊥AB&OF⊥BC.sincetheradiusthroughthepointofcontactofatangenttoacircleisperpendiculartothetangent.∴∠QDO=∠BFO=90o.∴InBFODalltheanglesareequalandBD=BF.SoBFODisasquare.i.ex=BD=q=1cm.∴Theradiusoftheincircle=x=1cm.Ans−OptionB.