In
△SMR,⇒ SM=SR [ Given ]
∴ ∠SMR=∠SRM [ Angles opposite to equal sides are equal ]
Let ∠SMR=∠SRM=x ----- ( 1 )
As ∠PSR is an exterior angle of △SMR
⇒ So, ∠PSR=∠SMR+∠SRM
⇒ ∠PSR=x+x=2x ---- ( 2 )
⇒ ∠PSR=∠PQR [ Opposite angles of parallelogram PQRS ]
⇒ So, ∠PQR=2x ----- ( 3 )
As PM∥QR
⇒ So, ∠PSR+∠QRS=180o.
⇒ 2x+∠QRS=180o.
⇒ ∠QRS=180o−2x ----- ( 4 )
As, ∠QRS+∠SRM+∠QRN=180o
⇒ (180o−2x)+x+∠QRN=180o [ From ( 1 ) and ( 4 ) ]
⇒ (180o−x)+∠QRN=180o
⇒ ∠QRN=x ---- ( 5 )
Also, ∠PQR is an exterior angle of △QRM
So, ∠PQR=∠QRN+∠QNR
⇒ 2x=x+∠QNR [ From ( 5 ) and ( 3 ) ]
⇒ ∠QNR=x ---- ( 6 )
In △QNR,
⇒ ∠QRN=∠QNR [ From ( 5 ) and ( 6 ) ]
∴ QR=QN [ Angles opposite to sides are equal ]